Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Environ Microbiol ; 89(6): e0023723, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2317494

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus are global threats to human health. The application of effective virucidal agents, which contribute to the inactivation of viruses on hands and environmental surfaces, is important to facilitate robust virus infection control measures. Naturally derived virucidal disinfectants have attracted attention owing to their safety and eco-friendly properties. In this study, we showed that multiple Japanese Saxifraga species-derived fractions demonstrated rapid, potent virucidal activity against the SARS-CoV-2 ancestral strain and multiple variant strains, IAV, and two human norovirus surrogates: feline calicivirus (FCV) and murine norovirus (MNV). Condensed tannins were identified as active chemical constituents that play a central role in the virucidal activities of these fractions. At a concentration of 25 µg/mL, the purified condensed tannin fraction Sst-2R induced significant reductions in the viral titers of the SARS-CoV-2 ancestral strain, IAV, and FCV (reductions of ≥3.13, ≥3.00, and 2.50 log10 50% tissue culture infective doses [TCID50]/mL, respectively) within 10 s of reaction time. Furthermore, at a concentration of 100 µg/mL, Sst-2R induced a reduction of 1.75 log10 TCID50/mL in the viral titers of MNV within 1 min. Western blotting and transmission electron microscopy analyses revealed that Sst-2R produced structural abnormalities in viral structural proteins and envelopes, resulting in the destruction of viral particles. Furthermore, Saxifraga species-derived fraction-containing cream showed virucidal activity against multiple viruses within 10 min. Our findings indicate that Saxifraga species-derived fractions containing condensed tannins can be used as disinfectants against multiple viruses on hands and environmental surfaces. IMPORTANCE SARS-CoV-2, IAV, and norovirus are highly contagious pathogens. The use of naturally derived components as novel virucidal/antiviral agents is currently attracting attention. We showed that fractions from extracts of Saxifraga species, in the form of a solution as well as a cream, exerted potent, rapid virucidal activities against SARS-CoV-2, IAV, and surrogates of human norovirus. Condensed tannins were found to play a central role in this activity. The in vitro cytotoxicity of the purified condensed tannin fraction at a concentration that exhibited some extent of virucidal activity was lower than that of 70% ethanol or 2,000 ppm sodium hypochlorite solution, which are popular virucidal disinfectants. Our study suggests that Saxifraga species-derived fractions containing condensed tannins can be used on hands and environmental surfaces as safe virucidal agents against multiple viruses.


Asunto(s)
Desinfectantes , Virus de la Influenza A , Norovirus , Proantocianidinas , SARS-CoV-2 , Saxifragaceae , Desinfectantes/farmacología , Virus de la Influenza A/efectos de los fármacos , Norovirus/efectos de los fármacos , Proantocianidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Saxifragaceae/química , Taninos
2.
J Mol Graph Model ; 118: 108345, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2239079

RESUMEN

Human norovirus (HuNoV) causes acute viral gastroenteritis in all age groups, and dehydration and severe diarrhea in the elderly. The World Health Organization reports ∼1.45 million deaths from acute gastroenteritis annually in the world. Rupintrivir, an inhibitory medicine against the human rhinovirus C3 protease, has been reported to inhibit HuNoV 3C protease. However, several HuNoV 3C protease mutations have been revealed to reduce the susceptibility of HuNoV to rupintrivir. The structural details behind rupintrivir-resistance of these single-point mutations (A105V and I109V) are not still clear. Hence, in this study, a combination of computational techniques were used to determine the rupintrivir-resistance mechanism and to propose an inhibitor against wild-type and mutant HuNoV 3C protease through structure-based virtual screening. Dynamic structural results indicated the unstable binding of rupintrivir at the cleft binding site of the wild-type and mutant 3C proteases, leading to its detachment. Our findings presented that the domain II of the HuNoV 3C protease had a critical role in binding of inhibitory molecules. Binding energy computations, steered molecular dynamics and umbrella sampling simulations confirmed that amentoflavone, the novel suggested inhibitor, strongly binds to the cleft site of all protease models and has a good structural stability in the complex system along the molecular dynamic simulations. Our in silico study proposed the selected compound as a potential inhibitor against the HuNoV 3C protease. However, additional experimental and clinical studies are required to corroborate the therapeutic efficacy of the compound.


Asunto(s)
Antivirales , Norovirus , Inhibidores de Proteasas , Humanos , Antivirales/química , Antivirales/farmacología , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/virología , Norovirus/efectos de los fármacos , Norovirus/metabolismo , Péptido Hidrolasas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química
3.
ACS Appl Bio Mater ; 4(8): 5897-5907, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1345533

RESUMEN

The COVID-19 pandemic has made it essential to explore alternative antiviral materials. Alginate is a biodegradable, renewable, biocompatible, water-soluble and antiviral biopolymer with many potential biomedical applications. In this regard, this review shows 17 types of viruses that have been tested in contact with alginate and its related biomaterials. Most of these studies show that alginate-based materials possess little or no toxicity and are able to inhibit a wide variety of viruses affecting different organisms: in humans by the human immunodeficiency virus type 1, the hepatitis A, B, and C viruses, Sindbis virus, herpes simplex virus type 1 and 2, poliovirus type 1, rabies virus, rubella virus, and the influenza virus; in mice by the murine norovirus; in bacteria by the T4 coliphage, and in plants by the tobacco mosaic virus and the potato virus X. Many of these are enveloped positive-sense single-stranded RNA viruses, like SARS-CoV-2, which render alginate-based materials highly promising in the COVID-19 pandemic.


Asunto(s)
Alginatos/química , Antivirales/farmacología , Materiales Biocompatibles/química , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Antivirales/uso terapéutico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , COVID-19/virología , Supervivencia Celular/efectos de los fármacos , Hepatovirus/efectos de los fármacos , Humanos , Norovirus/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación , Tratamiento Farmacológico de COVID-19
4.
PLoS One ; 16(5): e0251872, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1234592

RESUMEN

BACKGROUND: As the SARS-CoV-2 pandemic accelerates, the supply of personal protective equipment remains under strain. To combat shortages, re-use of surgical masks and filtering facepiece respirators has been recommended. Prior decontamination is paramount to the re-use of these typically single-use only items and, without compromising their integrity, must guarantee inactivation of SARS-CoV-2 and other contaminating pathogens. AIM: We provide information on the effect of time-dependent passive decontamination (infectivity loss over time during room temperature storage in a breathable bag) and evaluate inactivation of a SARS-CoV-2 surrogate and a non-enveloped model virus as well as mask and respirator integrity following active multiple-cycle vaporised hydrogen peroxide (VHP), ultraviolet germicidal irradiation (UVGI), and dry heat (DH) decontamination. METHODS: Masks and respirators, inoculated with infectious porcine respiratory coronavirus or murine norovirus, were submitted to passive decontamination or single or multiple active decontamination cycles; viruses were recovered from sample materials and viral titres were measured via TCID50 assay. In parallel, filtration efficiency tests and breathability tests were performed according to EN standard 14683 and NIOSH regulations. RESULTS AND DISCUSSION: Infectious porcine respiratory coronavirus and murine norovirus remained detectable on masks and respirators up to five and seven days of passive decontamination. Single and multiple cycles of VHP-, UVGI-, and DH were shown to not adversely affect bacterial filtration efficiency of masks. Single- and multiple UVGI did not adversely affect respirator filtration efficiency, while VHP and DH induced a decrease in filtration efficiency after one or three decontamination cycles. Multiple cycles of VHP-, UVGI-, and DH slightly decreased airflow resistance of masks but did not adversely affect respirator breathability. VHP and UVGI efficiently inactivated both viruses after five, DH after three, decontamination cycles, permitting demonstration of a loss of infectivity by more than three orders of magnitude. This multi-disciplinal approach provides important information on how often a given PPE item may be safely reused.


Asunto(s)
COVID-19/metabolismo , Descontaminación/métodos , Peróxido de Hidrógeno/farmacología , Norovirus/efectos de los fármacos , Equipo de Protección Personal/provisión & distribución , SARS-CoV-2/efectos de los fármacos , Antiinfecciosos/farmacología , COVID-19/epidemiología , COVID-19/virología , Equipo Reutilizado , Calor , Humanos , Máscaras/microbiología , Norovirus/aislamiento & purificación , Pandemias , Equipo de Protección Personal/microbiología , Dispositivos de Protección Respiratoria/microbiología , SARS-CoV-2/aislamiento & purificación , Rayos Ultravioleta , Terapia Ultravioleta , Ventiladores Mecánicos/microbiología , Volatilización
5.
BMC Microbiol ; 20(1): 265, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: covidwho-730206

RESUMEN

BACKGROUND: Acetic acid has been used to clean and disinfect surfaces in the household for many decades. The antimicrobial efficacy of cleaning procedures can be considered particularly important for young, old, pregnant, immunocompromised people, but may also concern other groups, particularly with regards to the COVID-19 pandemics. This study aimed to show that acetic acid exhibit an antibacterial and antifungal activity when used for cleaning purposes and is able to destroy certain viruses. Furthermore, a disinfecting effect of laundry in a simulated washing cycle has been investigated. RESULTS: At a concentration of 10% and in presence of 1.5% citric acid, acetic acid showed a reduction of > 5-log steps according to the specifications of DIN EN 1040 and DIN EN 1275 for the following microorganisms: P. aeruginosa, E. coli, S. aureus, L. monocytogenes, K. pneumoniae, E. hirae and A. brasiliensis. For MRSA a logarithmic reduction of 3.19 was obtained. Tests on surfaces according to DIN EN 13697 showed a complete reduction (> 5-log steps) for P. aeruginosa, E. coli, S. aureus, E. hirae, A. brasiliensis and C. albicans at an acetic acid concentration of already 5%. Virucidal efficacy tests according to DIN EN 14476 and DIN EN 16777 showed a reduction of ≥4-log-steps against the Modified Vaccinia virus Ankara (MVA) for acetic acid concentrations of 5% or higher. The results suggest that acetic acid does not have a disinfecting effect on microorganisms in a dosage that is commonly used for cleaning. However, this can be achieved by increasing the concentration of acetic acid used, especially when combined with citric acid. CONCLUSIONS: Our results show a disinfecting effect of acetic acid in a concentration of 10% and in presence of 1.5% citric acid against a variety of microorganisms. A virucidal effect against enveloped viruses could also be proven. Furthermore, the results showed a considerable antimicrobial effect of acetic acid when used in domestic laundry procedures.


Asunto(s)
Ácido Acético/farmacología , Antiinfecciosos/farmacología , Betacoronavirus/efectos de los fármacos , Ácido Cítrico/farmacología , Infecciones por Coronavirus/prevención & control , Desinfectantes/farmacología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Bacterias/efectos de los fármacos , COVID-19 , Desinfección/métodos , Hongos/efectos de los fármacos , Humanos , Norovirus/efectos de los fármacos , SARS-CoV-2
6.
Viruses ; 12(7)2020 06 28.
Artículo en Inglés | MEDLINE | ID: covidwho-627994

RESUMEN

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus (NV) are highly contagious pathogens that threaten human health. Here we focused on the antiviral potential of the medicinal herb, Saxifraga spinulosa (SS). Water-soluble extracts of SS were prepared, and their virus-inactivating activity was evaluated against the human virus pathogens SARS-CoV-2 and IAV; we also examined virucidal activity against feline calicivirus and murine norovirus, which are surrogates for human NV. Among our findings, we found that SS-derived gallocatechin gallate compounds were capable of inactivating all viruses tested. Interestingly, a pyrogallol-enriched fraction (Fr 1C) inactivated all viruses more rapidly and effectively than did any of the component compounds used alone. We found that 25 µg/mL of Fr 1C inactivated >99.6% of SARS-CoV-2 within 10 s (reduction of ≥2.33 log10 TCID50/mL). Fr 1C resulted in the disruption of viral genomes and proteins as determined by gel electrophoresis, electron microscopy, and reverse transcription-PCR. Taken together, our results reveal the potential of Fr 1C for development as a novel antiviral disinfectant.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Norovirus/efectos de los fármacos , Extractos Vegetales/farmacología , Plantas Medicinales , Saxifragaceae , Betacoronavirus/ultraestructura , Calicivirus Felino/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Genoma Viral/efectos de los fármacos , Pruebas de Hemaglutinación , Humanos , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Proteínas Virales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA